•Stimolazione della pelle produce sensazioni di tipo diverso:

Vibrazione Solletico Pressione o percezioni piu' complesse come Liscio Umido

Sensazione di temperatura

Sensazione di dolore

•Manipolazione consente esplorazione di ambiente e riconoscimento

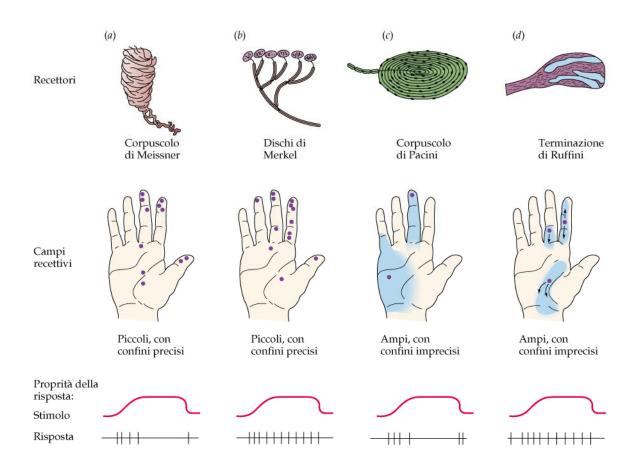
www.fisiokinesiterapia.biz

RECETTORI SENSORIALI TATTILI

Corpuscoli di Pacini

=>rapido adattamento campi recettivi estesi in muscoli, articolazioni, intestino stimolati da vibrazioni profondi

Corpuscoli di Meissner


=>rapido adattamento campi recettivi piccoli labbra, lingua, punta delle dita discriminazioni spaziali fini superficiali

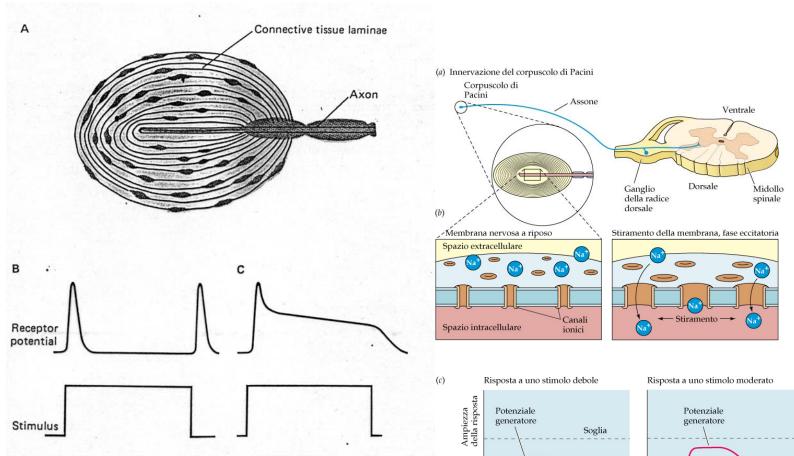
Dischi di Merkel

=>lento adattamento campi recettivi piccoli labbra, lingua, punta delle dita tatto superficiali

Terminazioni di Ruffini

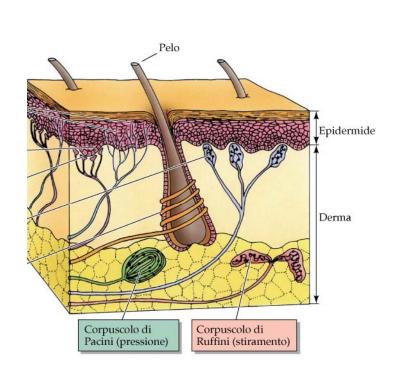
=>lento adattamento campi recettivi estesi temperatura profondi

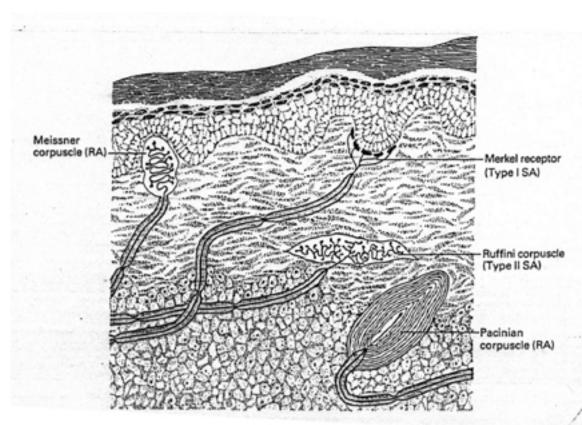
Risposta a uno stimolo intenso


Potenziale

generatore

Potenziale


a punta

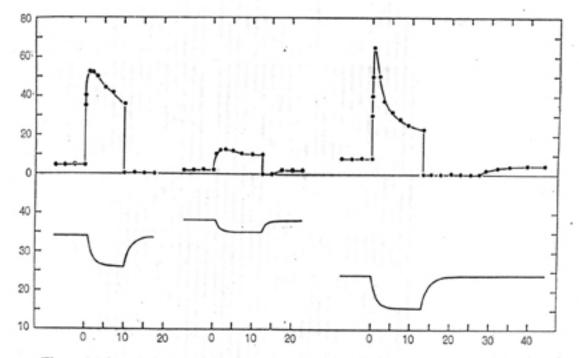

Corpuscoli del Pacini

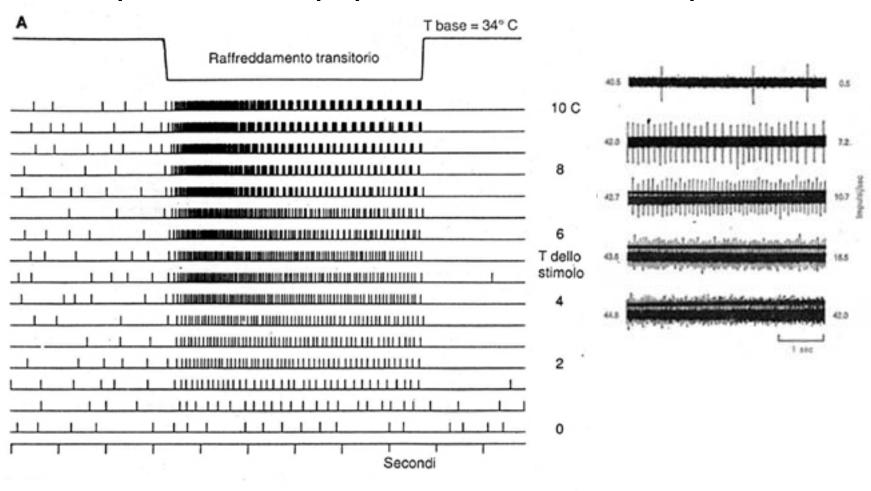
Stimolo

23-5 The Pacinian corpuscle is a rapidly adapting receptor in the skin that is sensitive to vibration. A. A cross section of this receptor reveals concentrically arranged layers of connective tissue surrounding the sensory nerve terminal.
B. An intact Pacinian corpuscle responds with a receptor potential only to the onset and offset of a mechanical stimulus.
C. If the connective tissue laminae are removed, the receptor responds to the same mechanical stimulus in a slowly adapting manner. (Adapted from Lowenstein and Mendelson, 1965).

•SENSAZIONE TERMICA MEDIATA DA RECETTORI PER IL CALDO E PER IL FREDDO

- Sono terminazioni libere
- •Fibre Aδ e C
- •Fibre a rapido adattamento segnalano la **rapidità** del cambiamento di temperatura l'escursione dalla temperatura base
- •Fibre a lento adattamento segnalano **l'entità** della variazione di temperatura
- Frequenza di scarica proporzionale all'entità della temperatura




Fig. 186. Risposte fasica e tonica di recettori per il freddo a un abbassamento della temperatura.

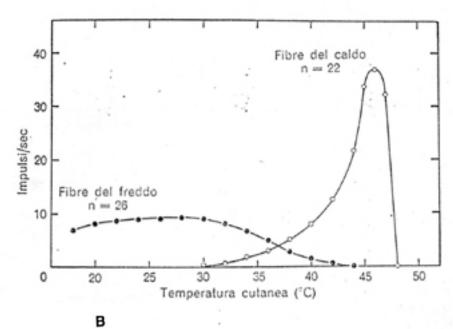
Andamento della frequenza di scarica (in alto; sull'ordinata: impulsi/sec) in funzione della temperatura cutanea (in basso; gradi C. sull'ordinata) d'una singola fibra per il freddo. Sull'ascissa: tempo in sec.

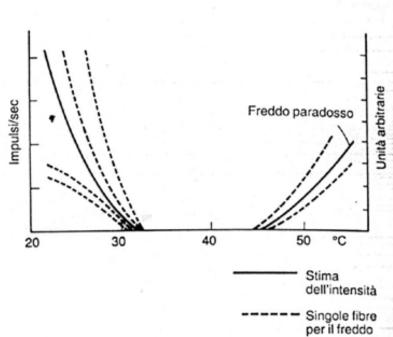
Quando il raffreddamento parte da temperature vicine alla norma, l'aumento della scarica è di tipo tonico: esso diminuisce di poco (sinistra) o non diminuisce (in mezzo) per tutta la durata del raffreddamento. Nel tracciato di destra si parte da un basso livello di temperatura. Si noti il forte aumento della frequenza all'inizio della discesa della temperatura: la scarica fasica segnala la rapidità del raffreddamento. Successivamente la frequenza della scarica si abbassa, pur mantenendosi nettamente superiore al livello di partenza: la scarica tonica segnala il livello stabile della temperatura. Il ritorno alla temperatura di partenza annulla temporaneamente la scarica di fondo.

(Da H. HENSEL e K. K. BOMAN, in J. Neurophysiol., 23: 564-578, 1966, fig. 9).

•Frequenza di scarica proporzionale all'entità della temperatura

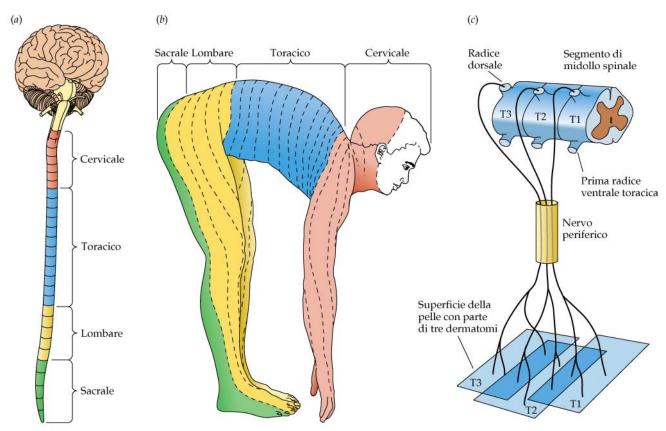
FREDDO


CALDO


Fibre per il caldo :

attivazione ottimale a 45 °C

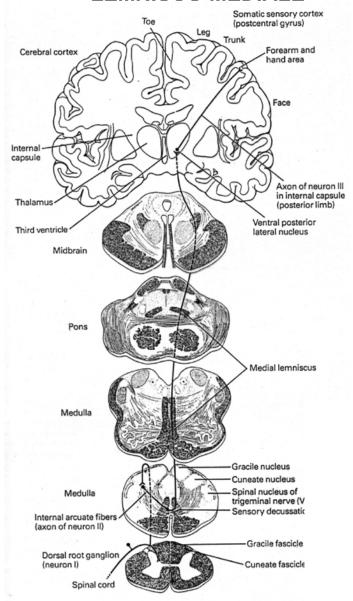
Fibre per il freddo:


attivazione ottimale tra 10 e 30 °C

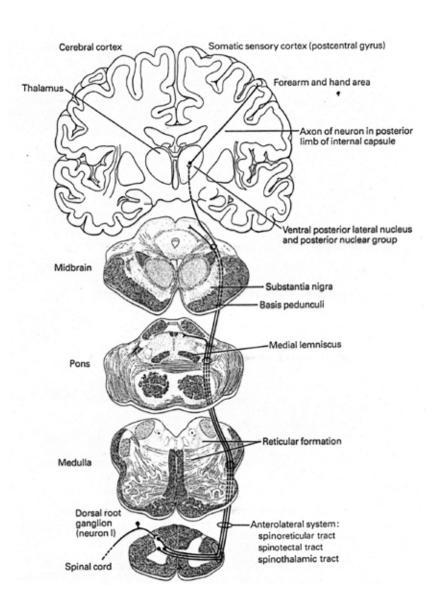
•Fibre Aα mieliniche	Nocicettori		DOLORE
	Nocicettori meccanici	Αδ	Dolore puntorio, acuto
80-120 m/sec	Nocicettori termici e meccano-termici	Αδ	Dolore puntorio, acuto
– 13-20μ		С	Dolore urente, lento
•Fibre Aβ mieliniche	Nocicettori polimodali	С	Dolore urente, lento
- 35-75 m/sec	Meccanocettori cutanei e sottocutanei		TATTO
	Corpuscolo di Meissner	Αβ	Tremolio
– 6-12μ	Corpuscolo di Pacini	Αβ	Vibrazione
 Fibre Aδ mieliniche 	Corpuscolo di Ruffini	Αβ	Infossamento stazionario della cute
5-30 m/sec	Recettore di Merkel	Αβ	Infossamento stazionario della cute
– 1-5μ	Recettori annessi a peli robusti	Αβ	Tremolio
•	Recettori annessi a lanugine	Αδ	Tremolio
•Fibre C non mieliniche	Meccanocettori muscolari e scheletrici		PROPRIOCEZIONE DEGLI ARTI
0.5-2 m/sec	Terminazioni fusali I	Αα	
– 0.02-1.5μ	Terminazioni fusali II	Αβ	
	Organo tendineo del Golgi	Αβ	
	Meccanocettori di capsule articolari	Αβ	
	Recettori termici		TEMPERATURA
	Terminazioni libere	Αδ	
		С	

•Superficie della pelle organizzata in dermatomeri: regioni innervate da un solo nervo spinale

Informazioni dalla pelle al cervello attraverso due vie:


1)SISTEMA DELLE COLONNE DORSALI E DEL LEMNISCO MEDIALE

- •Maggior parte di neuroni ascendenti sono i collaterali di neuroni sensitivi primari
- Decussazione nel tronco encefalico
- •Mediano percezione di tatto e propriocezione (fibre Aβ)


2) SISTEMA ANTEROLATERALE O SPINOTALAMICO

- Neuroni ascendenti sono i collocati in corna dorsali
- •Decussazione nel midollo spinale, a livello di entrata del neurone sensitivo
- •Mediano percezione di dolore e temperatura (fibre $A\delta$ e C)

SISTEMA DELLE COLONNE DORSALI E DEL LEMNISCO MEDIALE

SISTEMA ANTEROLATERALE O SPINOTALAMICO

Sinapsi nei nuclei talamici

ventrale posteriore laterale (corpo e arti) ventrale posteriore mediale (viso)

Alcune fibre del tratto anterolaterale terminano nei collicoli

CORTECCIA SOMATOSENSORIALE

Organizzazione in strati (6)

Dal talamo input a neuroni piramidali (strato IV)

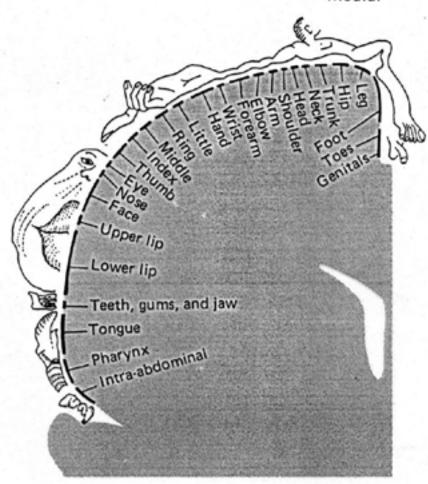
Organizzazione colonnare

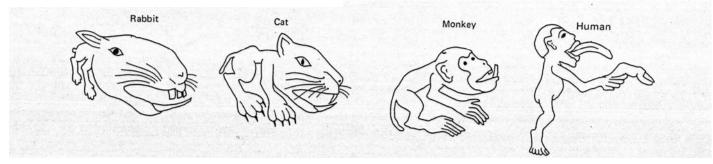
All'interno della colonna neuroni rispondono alla stessa qualita' di stimolazione (tatto o pressione) e alla stessa posizione nel corpo => hanno campi recettivi sovrapposti

ORGANIZZAZIONE SOMATOTOPICA

Medial

CORTECCIA SOMATOSENSORIALE


•ORGANIZZAZIONE SOMATOTOPICA

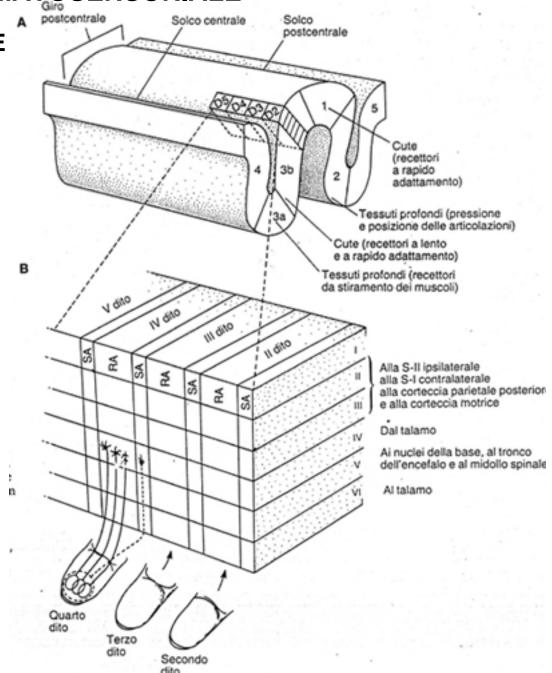

Le informazioni provenienti da parti del corpo adiacenti sono codificate da neuroni adiacenti

Lateral

•RAPPRESENTAZIONE NON UNIFORME

La quantità di neuroni dedicati alla sensibilità di una determinata parte del corpo è proporzionale alla sensibilità di tale parte del corpo

CORTECCIA SOMATOSENSORIALE


Area somatosensoriale I

situata nel giro postcentrale posteriormente al solco centrale

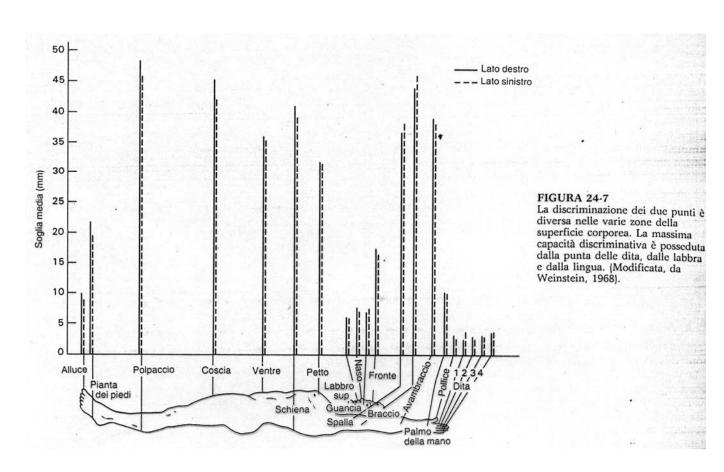
- •Divisa in 4 parti(1, 2, 3a, 3b) che per ogni punto del corpo
 - •elaborano in maniera diversa lo stimolo (recettori a rapido e a lento adattamento)
 - •elaborano aspetti diversi dello stimolo (tessitura, forma, dimensioni etc.)
- •Sembra che il flusso di informazioni sia :
 - ⇒3a,3b (tessitura, forma e dimensioni)
 - ⇒1 (tessitura)
 - ⇒2 (forma e dimensioni)

Area somatosensoriale II

Discriminazione tattile di forme

CORTECCIA SOMATOSENSORIALE

•Lesioni di corteccia sensoriale aboliscono capacita' discriminativa tattile


- •Registrazioni da corteccia sensoriale
 - 1/4 neuroni rispondono pressione
 - 1/4 neuroni rispondono stimolazione specifica (oggetto di forma particolare)
 - 1/4 neuroni rispondono stimolazione pelle o movimento articolazioni
 - 1/8 neuroni rispondono manipolazione articolazioni
 - 1/8 neuroni rispondono quando animale tocca oggetto e lo manipola =>

manipolazione attiva importante per sensazione tattile

- •Proprieta' dinamiche dei neuroni sensoriali seguono le proprieta' dinamiche dei recettori
- •Inibizione laterale sempre presente, assente solo a livello dei recettori
- •Organizzazione somatotopica a livello di tutte le stazioni sinaptiche: dermatomeri, fasci ascendenti (spinotalamico e colonne dorsali-lemnisco mediale),talamo, corteccia sensoriale I e II
- •Dimensioni di campi recettivi aumentano dalla periferia alla corteccia
- •Risoluzione spaziale della sensazione tattile varia da una parte del corpo all'altra
 - ★ dipende dal numero di recettori presenti in una certa area e dall'ampiezza dei loro campi recettivi
 - ★ questo si riflette in un numero variabile di neuroni sensoriali e in un'ampiezza diversa delle regioni corticali dedicati ad una certa area del corpo.

•Risoluzione spaziale della sensazione tattile varia da una parte del corpo all'altra

