RADIOPATOLOGIA

www.fisiokimesiterapia.biz

Danni tardivi da radiazioni ionizzanti

STOCASTICO

NON STOCASTICO

- GENETICO (disordini ereditari)
- SOMATICO (leucemo- e cancerogenesi)
- DANNO DA ESPOSIZIONE PRE-NATALE

Tipi di danno da radiazioni ionizzanti

STOCASTICO

- Può essere sia genetico che somatico
- Senza soglia
- Probabilistico (tutto o nulla)

NON STOCASTICO

- E' sempre somatico
- Con soglia di dose
- Non probabilistico (di entità graduata in funzione della dose)

Danno stocastico genetico

• Nel complesso, nella popolazione normale, circa il 6% dei neonati presenta **ANOMALIE CONGENITE**, provocate da anomalie cromosomiche, da mutazioni geniche e da disordini multifattoriali.

Qual è il ruolo delle radiazioni ionizzanti?

- Le radiazioni ionizzanti sono mutagene e possono produrre anomalie cromosomiche (studi sulla Drosophila 1927).
- Possono quindi, in teoria, produrre disordini ereditari ed anomalie congenite nell'uomo. I dati sull'uomo sono però carenti.

Alcuni studi hanno analizzato i figli di individui, di entrambi i sessi, sottoposti a radioterapia. In questi studi non è stato evidenziato un aumento nel tasso di aborti o di disordini ereditari a carico della prole (dosi ai gameti da pochi cGy a 100-200 cGy).

- Fossa, 1986: 95 figli di 69 padri trattati per tumori testicolari; malformazioni nel 2.1% (2,9% nei controlli)
- *Herrmann, 1988:* 50 figli di 20 uomini e 20 donne irradiati per tumore, dose media alle gonadi 55-72 cGy: anomalie congenite nel 5,5% dei figli.
- Galle, 1991: in circa 27000 bambini nati da genitori esposti a Hiroshima e Nagasaki, con dose media alle gonadi dei genitori di 60 cGy, non è stato osservato un aumento significativo di alterazioni dello sviluppo fisico o mentale e di anomalie cromosomiche.

Danno stocastico genetico

In sintesi,

Pur in assenza di dimostrazioni statistiche di aumentata incidenza di anomalie congenite nell'uomo dopo esposizione a radiazioni ionizzanti, sulla base di quanto osservato in altri esseri viventi si può concludere che:

- la possibilità di danno stocastico genetico nell'uomo deve essere accettata
- il rischio statistico di questo danno è molto basso

Danno stocastico somatico

Dei 75991 esposti di Hiroshima e Nagasaki, per i quali è stata ricalcolata la dose ricevuta e che sono stati seguiti per oltre 40 anni, 41719 hanno ricevuto più di 1 cGy.

- Non è stato osservato nessun effetto leucemogeno o cancerogeno per dosi inferiori a 50 cGy.
- Per dosi più elevate si è riscontrato un aumento di incidenza sia di leucemie che di tumori solidi.

Morti per <u>leucemia</u> nei sopravvissuti di Hiroshima e Nagasaki, in funzione della dose ricevuta.

Dose (cGy)	10 / 19	20 / 49	50 / 99	100 / 199	200/ 299	300/ 399	400 +
N.	5210	6375	3042	1578	412	130	155
OSS.	11	23	24	24	15	2	4
ATT.	15	19	9	4	1	0,5	0,5
O/A	0,7	1,2	2,6	6	15	4	8

Morti per <u>tumori solidi</u> nei sopravvissuti di Hiroshima e Nagasaki, in funzione della dose ricevuta.

Dose (cGy)	10 / 19	20 / 49	50 / 99	100 / 199	200 / 299	300 / 399	400 +
N.	5209	6218	2829	1380	412	130	155
OSS.	410	529	273	158	37	20	10
ATT.	413	500	214	102	21	9	6
O/A	1	1	1,2	1,5	1,7	2,2	1,6

E nei pazienti sottoposti a radioterapia?

- Nei pazienti irradiati per tumore si verificano condizioni molto diverse: irradiazione di un distretto corporeo, di intensità meno elevata, dose erogata in modo frazionato.
- Nei lungosopravviventi trattati per svariati tumori (mammella, Hodgkin) si osserva un modesto eccesso di leucemie (solo se associata chemioterapia) e di tumori solidi in area irradiata (sarcomi, ca. mammella, ca. polmone) con lunga latenza.
- La radioterapia è potenzialmente cancerogena, ma solo una piccola minoranza di secondi tumori metacroni è attribuibile ad essa.

Danno stocastico somatico

In sintesi,

- Un danno stocastico somatico da radiazioni ionizzanti è stato <u>dimostrato per dosi "elevate"</u> (> 50 cGy), la sua incidenza è comunque assai bassa.
- Per <u>dosi "basse</u>", non esiste nessuna conferma sperimentale del nesso causale ma, tenuto conto dell'andamento probabilistico dell'evento, <u>una cancerogenesi radio-indotta è da ritenere possibile</u>, con incidenza molto bassa.

Danno non stocastico

- Si manifesta in modo graduato, con entità prevedibile in funzione della dose assorbita.
- Si osserva per <u>dosi molto più elevate</u>: esposizione professionale, esposizione in radioterapia, esposizione acuta accidentale.
- La <u>manifestazione clinica è diversa</u> nei vari organi o tessuti ed è condizionata da:
 - caratteristiche delle cellule target (parenchimali, stromali, vascolari)
 - distribuzione funzionale dell'organo (omogenea, eterogenea)
 - organizzazione strutturale delle sub-unità funzionali (seriale o parallela)

Organizzazione	Distribuzione Funzionale			
Strutturale	Omogenea	Eterogenea		
Parallela	Polmone Fegato Rene	Encefalo Osso		
Seriale	Esofago Intestino	Midollo spinale Vie ottiche		

E' possibile prevedere il danno non stocastico?

- 1. Analisi di casistiche cliniche retrospettive
- 2. Definizione delle "dosi critiche" (dosi di tolleranza) dei vari tessuti de organi (TD 5/5 e TD 50/5)
- 3. Utilizzo di "formule di isoeffetto" per prevedere gli effetti biologici di diversi fattori dose-tempo.

Danno tardivo e dosi di tolleranza (Gy)

ORGANO	DANNO	TD5/5	TD50/5
Cute	ulcerazione, sclerosi	55	70
Mucosa orale	ulcerazione	60	75
Esofago	stenosi, ulcerazione	60	70
Int. Tenue	stenosi, ulcerazione	45	65
Retto	stenosi, ulcerazione	55	80
Gh. Salivari	xerostomia	50	70
Fegato	epatite, atrofia	25	40
Rene	sclerosi, IRC	20	30
Testicolo	sterilità permanente	5-15	20
Ovaio	sterilità permanente	2-3	6-12

Danno tardivo e dosi di tolleranza (Gy)

ORGANO	DANNO	TD5/5	TD50/5
Polmone	polmonite, fibrosi	15	30
Cuore	pericardite, pancardite	40	60
Osso (adulto)	necrosi, frattura pat.	60	100
Osso (bambino)	arresto crescita	20	30
Encefalo	necrosi	50	> 60
Midollo spinale	mielite, necrosi	50	> 55
Occhio	panoftalmite	55	100
Cristallino	cataratta	5	12
Tiroide	ipotiroidismo	45	> 100
Ipofisi	ipopituitarismo	45	> 100
Midollo osseo	ipo-aplasia	2	5

Esposizione globale acuta

Per dosi crescenti osserviamo:

- sindrome ematologica
- sindrome gastroenterica
- sindrome respiratoria
- sindrome neurologica

Dose	Effetto
10	Morte in 30 giorni (100% degli esposti)
4,5	Morte in 30 giorni (50% degli esposti)
1,5	Malattia acuta da raggi (certa)
1,0	Malattia acuta da raggi (probabile)
0,5	Alterazioni ematologiche minori
0,2	Effetti rilevabili sui cromosomi

Danno da esposizione prenatale

• Lo studio del danno da esposizione prenatale (stocastico e non stocastico) è importante, anche per le conseguenze sulla normativa protezionistica che riguarda le donne (popolazione generale ed esposte professionalmente).

ABORTO

- I dati disponibili si riferiscono soprattutto agli animali: nei topi, prima dell'impianto, dosi attorno ai 10 cGy possono causare aborto, che si osserva nel 50% dei casi per dosi di 1 6 Gy. In un epoca successiva della gravidanza lo stesso effetto si può verificare per dosi più elevate (>25 Gy).
- Nell'uomo dosi di 3 5 Gy inducono aborto nella maggioranza dei casi.

MALFORMAZIONI

- Tra gli esposti "in utero" a Hiroshima e Nagasaki, l'unica anomalia osservata con incidenza maggiore in modo significativo è risultata la riduzione della circonferenza cranica, per dosi > 10 cGy e per esposizione fra la 3° e l'8° settimana di gestazione.
- Tra gli esposti "in utero" a seguito di procedure radiodiagnostiche, non vi sono segnalazioni di aumento significativo dell'incidenza di malformazioni.

CANCEROGENESI

• I dati più consistenti derivano dallo "Oxford survey" che ha esaminato oltre 7000 casi con neoplasie infantili e 7000 controlli sani, confrontando nei due gruppi il livello di esposizione "in utero" per ragioni mediche. I dati sono stati confrontati con quelli degli esposti di Hiroshima e Nagasaki.

Casi di neoplasia infantile in eccesso, per 1 Gy

Oxford survey Hiroshima e Nagasaki

1970: 570 / 10000 1970: 11 / 10000

1988: 217 / 10000 1988: 47 / 10000

Probabilità di manifestare una neoplasia infantile dopo irradiazione prenatale per fini diagnostici.

Dose al feto (cGy)	0	1	5	10
1° trimestre	0,07%	0,25%	0,88%	1,75%
2° trimestre	0,07%	0,12%	0,30%	0,52%

Sulla base di questi dati, riguardo alla esposizione della donna in gravidanza, è ragionevole questa condotta prudenziale:

- Dose < 10 cGy: nessun provvedimento
- Dose 10-20 cGy: valutazione caso per caso
- Dose > 20 cGy: può essere consigliato un aborto terapeutico (livelli di dose rari)