www.fisiokinesiterapia.biz

"Prove di Funzionalità Respiratoria"

Le prove di funzionalità respiratoria

- La Ventilazione:
 - Prove di Funzionalità Ventilatoria
 - Test di performance dei muscoli respiratori
- Gli scambi gassosi:
 - Test della Diffusione del CO
 - Emogasanalisi arteriosa

Test di funzionalità respiratoria La Ventilazione

Prove di Funzionalità Ventilatoria

- Volumi polmonari statici
- Volumi polmonari dinamici
 - Test di espirazione forzata
- Test di reversibilità
- Test di iperreattività bronchiale

Test di performance dei muscoli respiratori

Prove di funzionalità respiratoria: Principali indicazioni

- Diagnosi di patologie polmonari (segni, sintomi, esami di laboratorio o esami strumentali alterati)
- Valutazione della gravità o progressione della patologia (BPCO, fibrosi cistica, patologie polmonari interstiziali, scompenso cardiaco, patologie neuromuscolari)
- Valutazione del rischio preoperatorio
- Valutazione del grado di invalidità a fini assicurativi

Prove di funzionalità respiratoria: Principali controindicazioni

- Emottisi
- PNX
- Recente intervento addominale/toracico
- Trauma toracico
- Recente intervento agli occhi
- IMA (entro tre mesi) o angina instabile
- Aneurisma toracico

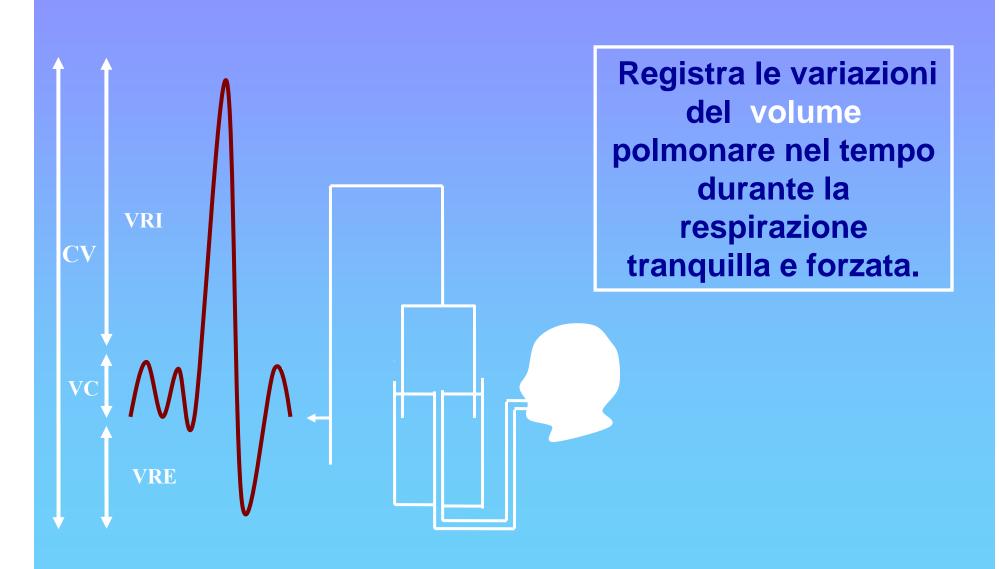
Test di funzionalità respiratoria La Ventilazione

Prove di Funzionalità Ventilatoria

- Volumi polmonari statici
- Volumi polmonari dinamici
 - Test di espirazione forzata
- Test di reversibilità
- Test di iperreattività bronchiale

Test di performance dei muscoli respiratori

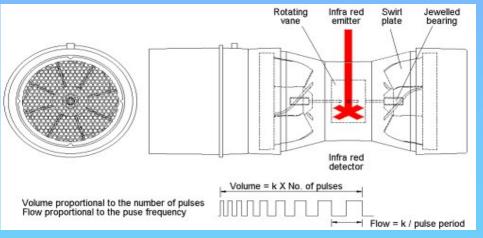
Volumi polmonari statici Strumentazione


Gli spirometri a campana o soffietto misurano lo spostamento dei volumi di aria mobilizzabili attraverso il movimento di una campana il cui bordo inferiore è immerso nell'acqua (spirometri a campana) o di un mantice a secco (spirometri a secco).

Volumi polmonari: nomenclatura

CV	Capacità vitale	VC
VRI	Vol. riserva inspiratoria	IRV
VRE	Vol. riserva espiratoria	ERV
CI	Capacità inspiratoria	IC
VC	Volume corrente	\mathbf{V}_{T}
CPT	Cap. polmonare totale	TLC
CFR	Cap. funzionale residua	FRC
VR	Volume residuo	RV
CVF	Cap. vitale forzata	FVC
VEMS	Volume espiratorio forzato 1 s	FEV ₁
VR/CPT%	Indice di Motley	RV/TLC%
VEMS/CVF		FEV ₁ /FVC%
VEMS/CV%	Indice di Tiffeneau	FEV ₁ /VC%

Lo spirometro Spirometro a campana



Volumi polmonari statici Strumentazione

Gli spirometri a flusso (pneumotacografo e spirometro a turbina, flussimetro ad ultrasuoni, flussimetro di massa) misurano i flussi nel tempo dai quali sono derivati i volumi.

Spirometro a turbina


Spirometria lenta Parametri e tracciato spirometrico

Definizioni

- Volume Corrente (VC): volume d'aria mobilizzato ad ogni respiro tranquillo
- Volume di Riserva Inspiratoria (VRI): volume d'aria mobilizzabile al di sopra di un VC.
- Volume di Riserva Espiratoria (VRE): volume d'aria mobilizzabile al di sotto di un VC.
- <u>Capacità Vitale (CV):</u> massimo volume d'aria che può essere espirato completamente e lentamente dopo un'inspirazione massimale.

Volumi polmonari statici

Definizioni

- <u>Volume Corrente (VC)</u>: volume d'aria mobilizzato ad ogni respiro tranquillo.
- Volume di Riserva Inspiratoria (VRI): volume d'aria mobilizzabile al di sopra di un VC.
- Volume di Riserva Espiratoria (VRE): volume d'aria mobilizzabile al di sotto di un VC.
- <u>Capacità Vitale (CV):</u> massimo volume d'aria che può essere espirato completamente e lentamente dopo un'inspirazione massimale.
- Capacità Funzionale Residua (CFR): massima quantità d'aria contenuta nel polmone al termine di una espirazione tranquilla.
- Volume Residuo (VR): volume d'aria presente nel polmone al termine di una espirazione massimale.
- Capacità Polmonare Totale (CPT):
 massima quantità d'aria contenuta nel
 polmone all'apice di una inspirazione
 massimale.

Volumi polmonari statici *Misurazione*

Pletismografia corporea

Il paziente viene posto all'interno di una cabina pressurizzata a T costante.

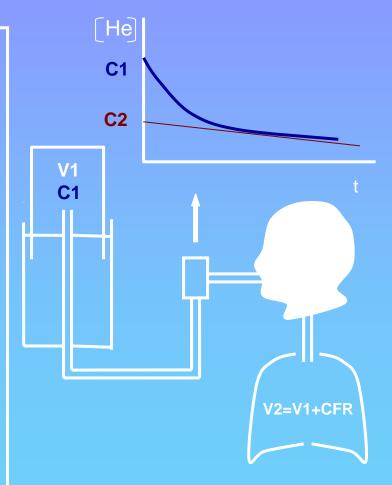
Si misurano le variazioni di P della cabina durante gli atti respiratori.

Applicando la legge di Boyle si può ricavare il volume polmonare:

$$P \times V = (P \pm DP) \times (V \pm DV)$$

$$V = (P \pm DP) \times \frac{DV}{DP}$$

Volumi polmonari statici *Misurazione*


Diluizione dell'elio

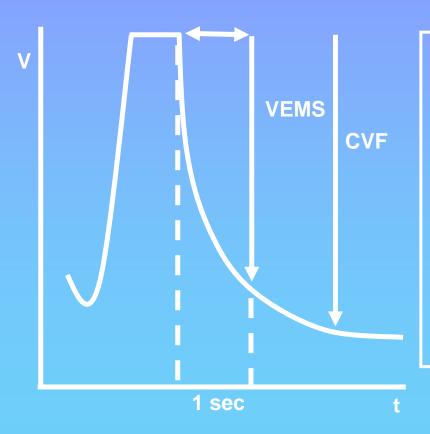
Si collega il paziente allo spirometro al termine di una espirazione lenta (volume polmonare = CFR).

Sono noti il volume del circuito e la concentrazione iniziale di elio (m = V1 x **C1**).

Si fa respirare il paziente fino ad ottenere una omogenea distribuzione del gas. Poiché l'He non si è per nulla disperso la quantità di He presente prima dell'equilibrio (m = V1 x C1) uguaglia la quantità all'equilibrio (m = V2 x C2).

C1 x V1 = C2 x V2; essendo V2 = V1 + CFR CFR= V1 x (C1 - C2) / C2 \rightarrow VR = CFR - VRE

Test di funzionalità respiratoria La Ventilazione

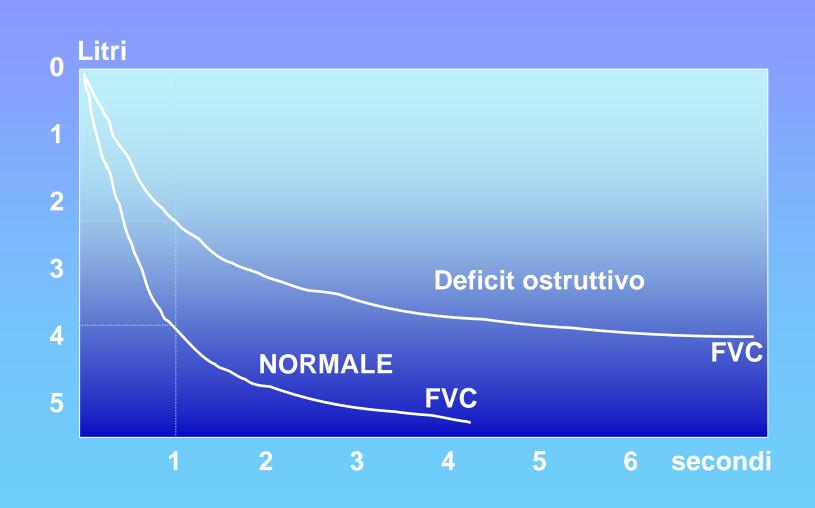

Prove di Funzionalità Ventilatoria

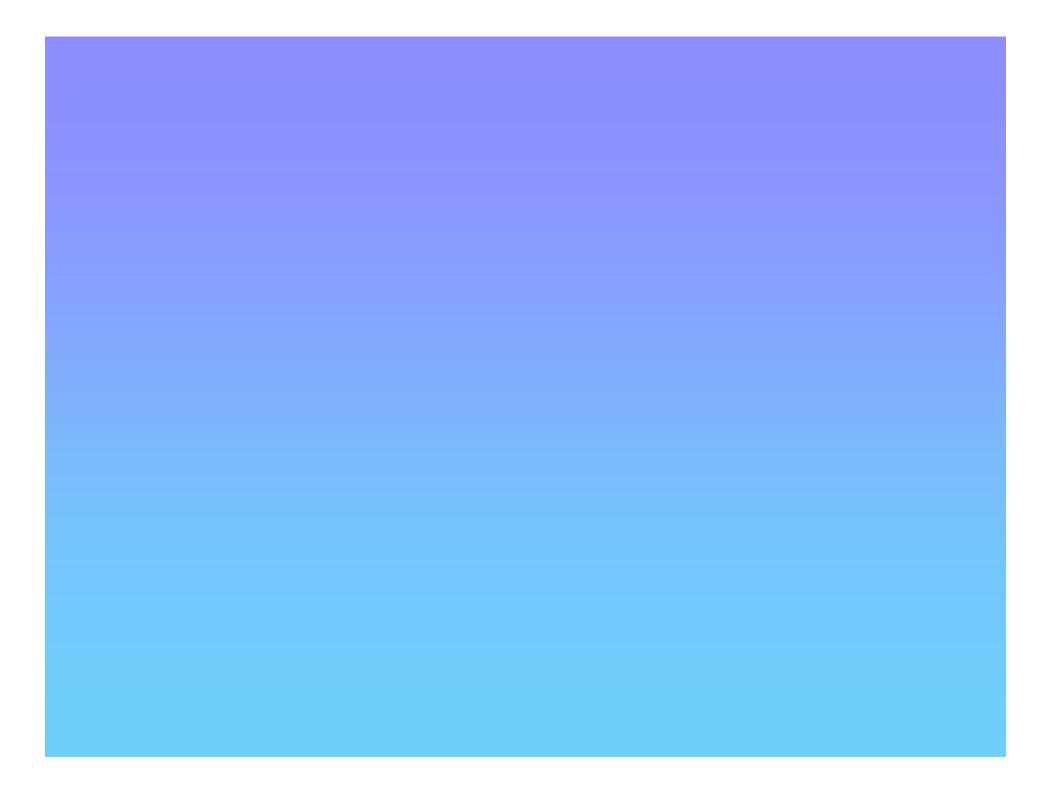
- Volumi polmonari statici
- Volumi polmonari dinamici
 - Test di espirazione forzata
- Test di reversibilità
- Test di iperreattività bronchiale

Test di performance dei muscoli respiratori

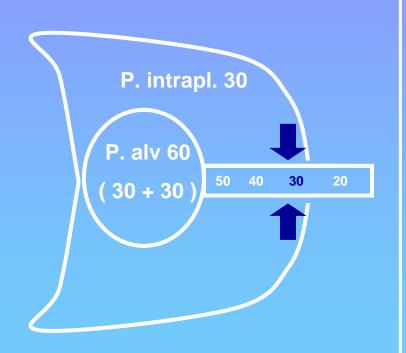
Test di espirazione forzata Volumi polmonari dinamici

Parametri e tracciato spirometrico



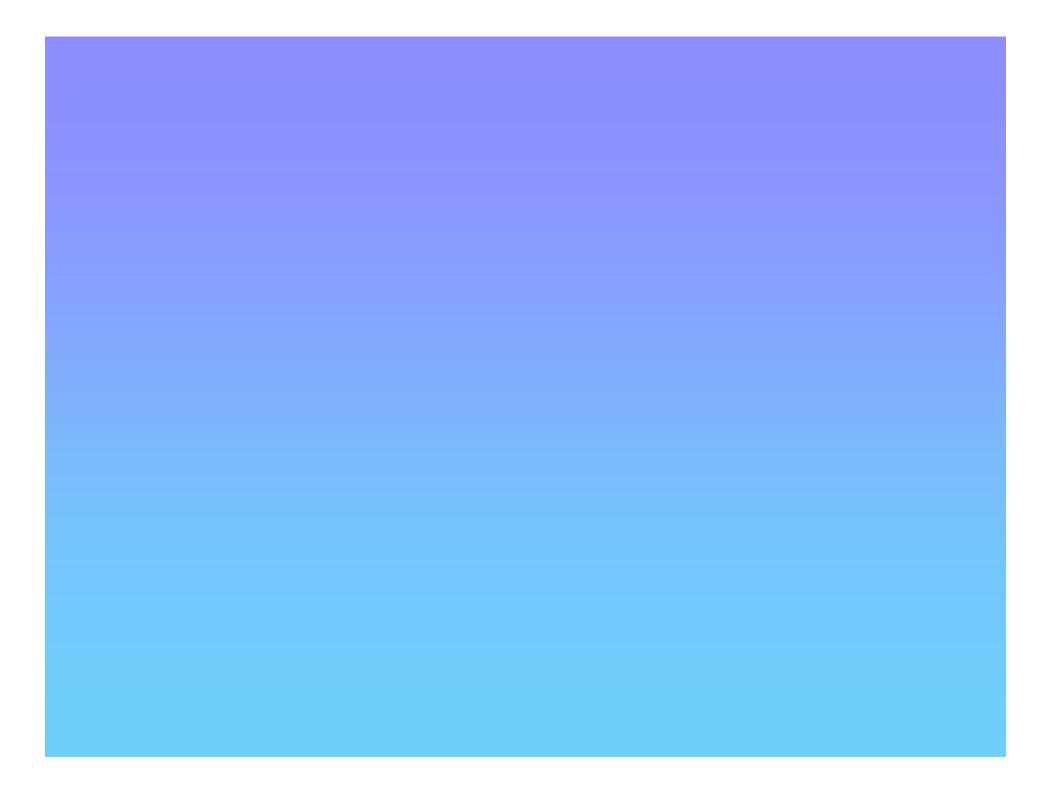

Dopo aver fatto compiere al paziente una inspirazione massimale, lo si fa espirare con la massima forza il massimo volume di aria possibile.

Misuriamo così:


- Il volume espiratorio massimo nel primo secondo: VEMS
- La capacità vitale forzata: CVF
- II rapporto VEMS / CVF %

Spirometria: normale e deficit ostruttivo Curva Volume / Tempo

Curva flusso-volume Compressione dinamica delle vie aeree


All'inizio di una espirazione forzata (CPT) abbiamo massimi valori di P intrapleurica e P alveolare.

Durante l'espirazione, la P all'interno delle vie aeree (Paw) diminuisce progressivamente per la presenza delle fisiologiche resistenze al flusso.

Lungo le vie aeree c'è quindi un punto in cui la Paw eguaglia quella intrapleurica:

PUNTO DI EGUAL PRESSIONE

Il segmento a valle del PEP avrà un calibro inferiore. A questo livello il flusso dipende dalla sola pressione di retrazione polmonare.

Test di espirazione forzata Interpretazione

Indici Funzionali	Insufficienza ventilatoria di tipo restrittivo	Insufficienza ventilatoria di tipo ostruttivo
CVF (FVC) Capacità Vitale Forzata	Diminuita	Normale o diminuita
VEMS (FEV1) Volume Espiratorio Massimo nel primo Secondo	Diminuito in modo proporzionale alla CVF	Diminuito più della CVF
VEMS/CVF % (FEV1/FVC%)	Normale	Diminuito

Volumi polmonari statici Interpretazione

Indici Funzionali	Insufficienza ventilatoria di tipo restrittivo	Insufficienza ventilatoria di tipo ostruttivo
VR <i>(RV)</i> Volume Residuo	Diminuito	Aumentato
CPT <i>(TLC)</i> Capacità Polmonare Totale	Diminuito in modo proporzionale alla VR	Normale o lievemente aumentato
VR/CPT % (RV/TLC%)	Normale	Aumentato

Interpretazione

Insufficienza ventilatoria

di tipo OSTRUTTIVO

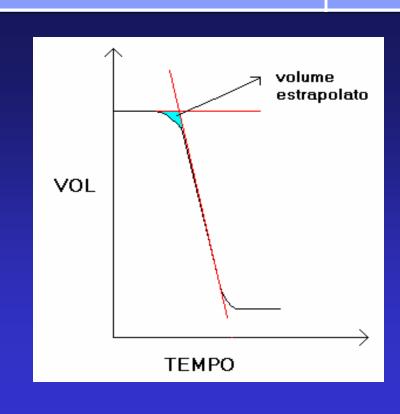
- Asma
- BPCO
 - -bronchite cronica
 - -enfisema
- Bronchiectasie

di tipo RESTRITTIVO

- Patologie della gabbia toracica
- Patologie neuromuscolari
- Lesioni occupanti spazio
- Fibrosi polmonare
- Patologia pleurica

Prove di funzionalità respiratoria: controllo di qualità

L'attendibilità della prova è condizionata da due principali parametri:

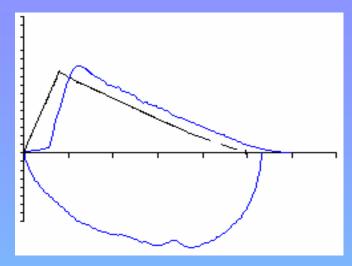

- La ACCURATEZZA: quanto la misurazione riflette i valori reali;
- La PRECISIONE: cioè la variabilità (**ripetibilità**) di prove successive di uno stesso paziente ; è indipendente dalla accuratezza e dipende dal paziente e dall'operatore.

CRITERI DI ACCETTABILITA'

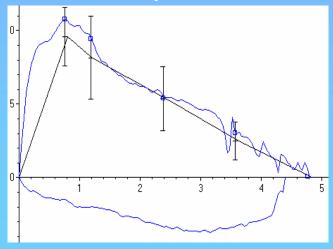
CONTROLLO DI QUALITA'

Inizio espirazione senza esitazioni

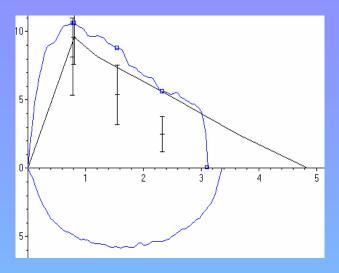
Volume estrapolato < 5% dell' CVF o di 150 ml (Intervallo di tempo tra 10-90% PEF <120 ms)*

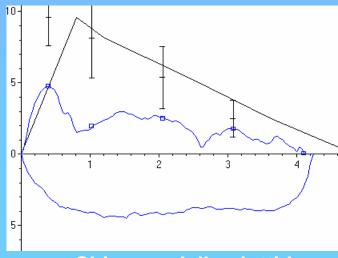

Inizio espirazione senza esitazioni con assenza di perdite espiratorie prima dell'espirazione forzata; il volume estrapolato (area azzurra) non dovrebbe essere superiore al 5% dell' CVF o a 150 ml.

American Thoracic Society. Standardization of spirometry 1994 update. Am J Respir Crit Care Med 1995; 152 (3): 1107-1136


CRITERI DI ACCETTABILITA'	CONTROLLO DI QUALITA'
Inizio espirazione senza esitazioni	Volume estrapolato < 5% dell' CVF o di 150 ml (Intervallo di tempo tra 10-90% PEF <120 ms)*
Adeguato tempo di espirazione	Espirazione > 6 secondi (Espirazione > 4 secondi in particolari casi; bambini, giovani adulti, deficit restrittivi)
Espirazione completa	Il test deve concludersi con un plateaù di almeno 1 secondo (a flusso costante < 0,03 l/sec)
Assenza di artefatti	Tosse, chiusura della glottide, sforzo variabile
CRITERIO DI RIPRODUCIBILITA'	Almeno tre prove accettabili su un massimo di otto secondo il criterio che le due CVF e i due VEMS più elevati non differiscano più di 200 ml.

American Thoracic Society. Standardization of spirometry 1994 update. Am J Respir Crit Care Med 1995; 152 (3): 1107-1136


Controllo di qualità Curve Flusso/volume scorrette


Partenza lenta dell'espirazione

Tosse

Arresto espirazione prima di 6'

Chiusura della glottide

Test di Funzione Respiratoria Classificazione deficit di tipo ostruttivo

VEMS/CVF inferiore al predetto

VARIANTE FISIOLOGICA	VEMS > 100% predetto
LIEVE	VEMS < 100 e ≥ 70%
MODERATA	VEMS < 70 e ≥ 60% predetto
MODERATAMENTE GRAVE	VEMS < 60 e ≥ 50% predetto
GRAVE	VEMS < 50 e ≥ 34% predetto
MOLTO GRAVE	VEMS < 34% predetto

American Thoracic Society. 1991. Lung function testing: selection of reference values and interpretative strategies. Am. Rev. Respir. Dis. 144:1202-1218.

Classificazione spirometrica di gravità della BPCO

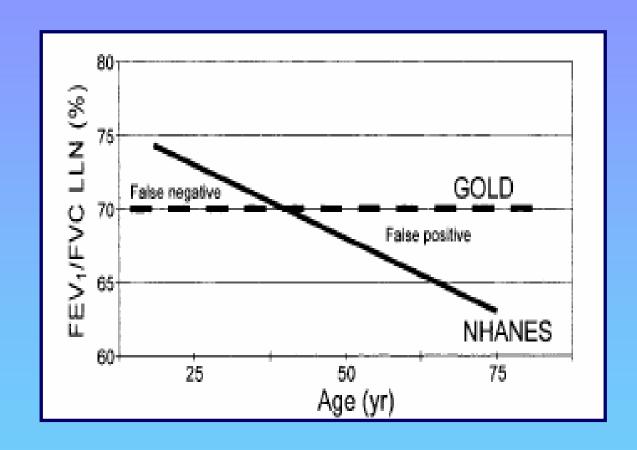
GOLD - ATS/ERS

VEMS/CVF < 70%

STADIO 1: VEMS ≥ 80% predetto

STADIO 2: VEMS 50-80% predetto

STADIO 3: VEMS 30-50% predetto


STADIO 4: VEMS <30% predetto

I valori VEMS, VEMS/CVF sono da considerarsi post-broncodilatazione

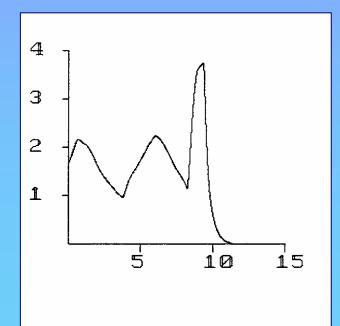
L.M. Fabbri, S.S. Hurd, for the GOLD Scientific Committee Eur Respir Global Strategy for the Diagnosis, Management and Prevention of COPD: 2003 update J 2003; 22: 1-2.

B.R. Celli, W. MacNee and committee members Eur Respir J 2004; 23: 932-946

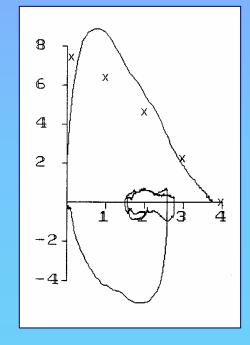
Misclassification of the FEV1/FVC ratio

Enright PL, Kaminsky DA Strategies for Screening for Chronic Obstructive Pulmonary Disease. Respir Care 2003;48(12):1194 –1201

Test di Funzione Respiratoria Classificazione deficit di tipo restrittivo

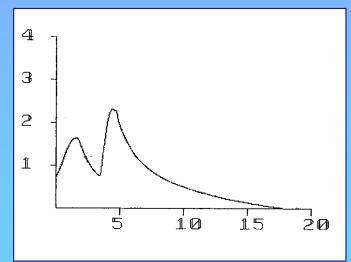

Basata sulla CPT:	Se la CPT non è stata misurata si considera la riduzione della CV e si parla di "restrizione dell'escursione volumetrica dei polmoni"
LIEVE:	LIEVE:
CPT < predetto ma ≥ 70%	CV < predetto ma ≥ 70%
MODERATA:	MODERATA:
CPT 60-70% predetto	CV 60-70% predetto
MODERATAMENTE GRAVE:	MODERATAMENTE GRAVE:
CPT < 60% predetto	CV 50-60% predetto
	GRAVE:
	CV 50-34% predetto
	MOLTO GRAVE:
	CV < 34% predetto

American Thoracic Society. 1991. Lung function testing: selection of reference values and interpretative strategies.

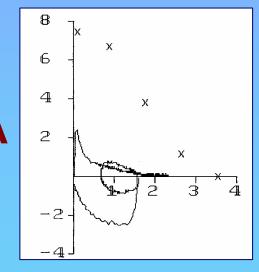

Am. Rev. Respir. Dis. 144:1202-1218.

Esempio di interpretazione di spirometria n. 1

		OSS.	teorici	0,0	lim.
VC	1	3.82	4.02	95	3.33-4.71
FVC	1	3.75	3.96	95	3.25-4.67
FEV1	1	3.51	3.47	101	2.85-4.09
FEV1/VC	9/0	91.71	84.11	109	73.4-94.8



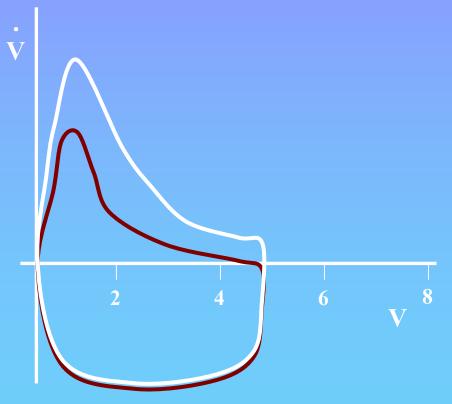
NORMALE



Esempio di interpretazione di spirometria n. 2a

		oss.	teorici	% lim.
VC	1	2.34	3.68	64 ↓ 2.76-4.60
FVC	1	2.33	3.54	66 ↓ 2.54-4.54
FEV1	1	0.86	2.70	32 ↓↓ 1.86-3.54
FEV1/VC	a o	36.68	74.14	49 ↓ 62.3-85.9

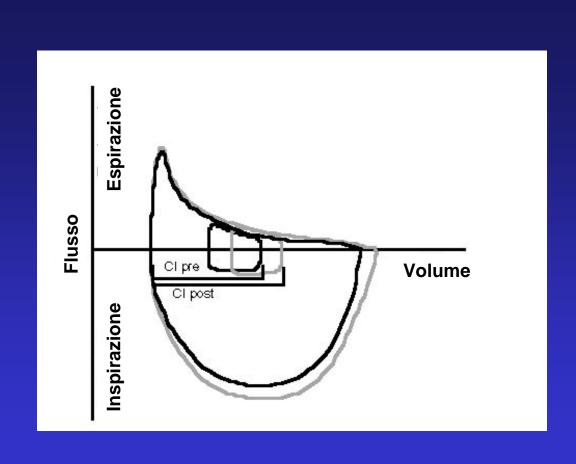
SINDROME OSTRUTTIVA



Test di broncodilatazione o reversibilità

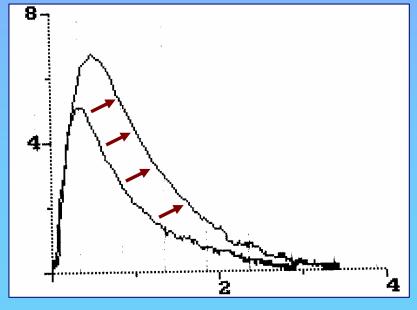
Si effettua in soggetti con ostruzione bronchiale accertata mediante esame spirometrico, somministrando un farmaco broncodilatatore b_2 -agonista a breve durata di azione (es.: 400 mg di salbutamolo) e si ripete la prova di espirazione forzata dopo 15-20 minuti.

Test di broncodilatazione o reversibilità


Valutazione della reversibilità dell'ostruzione

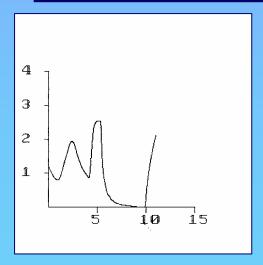
- Dopo 20' dalla somministrazione di 200-400 mcg di beta 2 agonista o 80 mcg di anticolinergico si rivaluta il VEMS con una manovra di espirazione forzata. Si possono verificare 3 possibilità:
- 1. il FEV1 aumenta di > 12% e 200 ml rispetto al basale tornando a valori normali (> 80% del predetto): DEFICIT VENTILATORIO DI TIPO OSTRUTTIVO COMPLETAMENTE REVERSIBILE. (tipica dell'Asma bronchiale)
- 2. il FEV1 è aumentato del 12% o di 200 ml rispetto al valore basale ma resta < 80% del teorico e VEMS/CVF < 70: DEFICIT VENTILATORIO DI TIPO OSTRUTTIVO PARZIALMENTE REVERSIBILE . (tipico della BPCO parzialmente reversibile)
- 3. il FEV1 aumenta < 12% o di 200 ml rispetto al valore basale: DEFICIT VENTILATORIO NON REVERSIBILE . (tipico della BPCO non reversibile)

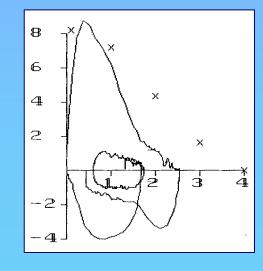
Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am J Respir Crit Care Med 1991; 144: 1202-18


Test di broncodilatazione o reversibilità

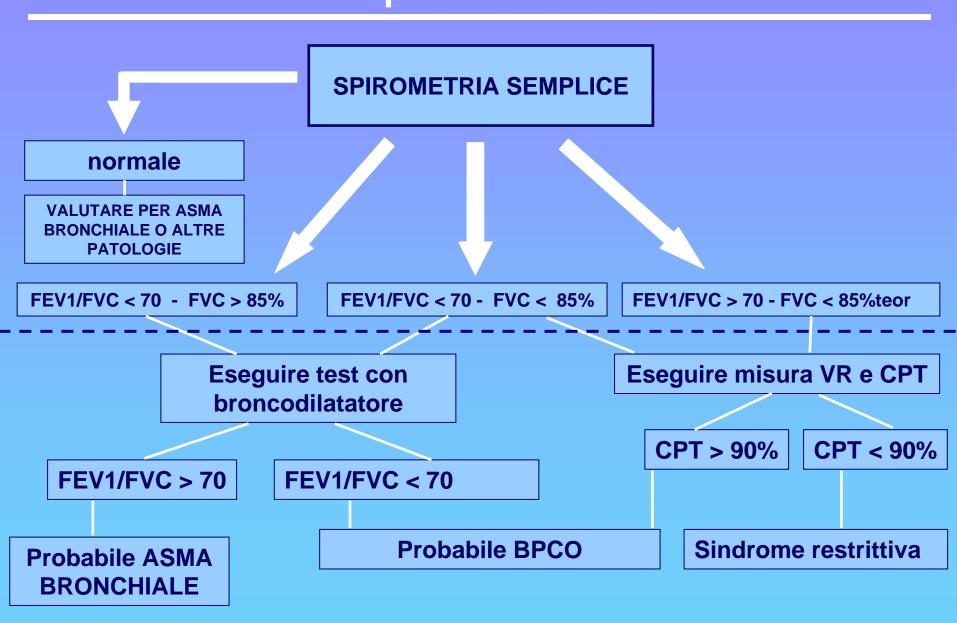
Maestrelli. Fisiopatologia della broncopneumopatia cronica ostruttiva. Ann Ist Super Sanità 2003; 39(4):495-506

Esempio di interpretazione di spirometria n. 2b


VC	1	OSS.	teorici			post-br	%/oss
FVC	1	3.09 2.92	3.98 3.83		3.06-4.90 2.83-4.83	3.43	117
FEV1	ī	1.93	2.92		2.08-3.76	2.36	122
FEV1/VC	%	62.52	74.14	84	62.3-85.9		


OSTRUZIONE BRONCHIALE REVERSIBILE

Esempio di interpretazione di spirometria n. 3


VC FVC FEV1 FEV1/VC	1 1 1 %	oss. teorici % lim. 2.56 4.18 61 ↓ 3.26-5.10 2.56 4.01 64 ↓ 3.01-5.01 2.29 3.22 71 ↓ 2.38-4.06 89.26 77.36 115 ↑ 65.6-89.2
RV FRC	1 1	0.90 2.20 $41 \downarrow 1.53-2.88$ 2.10 3.45 61 $2.46-4.44$
TLC RV/TLC	1 %	3.47 6.51 $53 \downarrow 5.36-7.66$ 26.08 35.04 74 26.0-44.0

SINDROME RESTRITTIVA

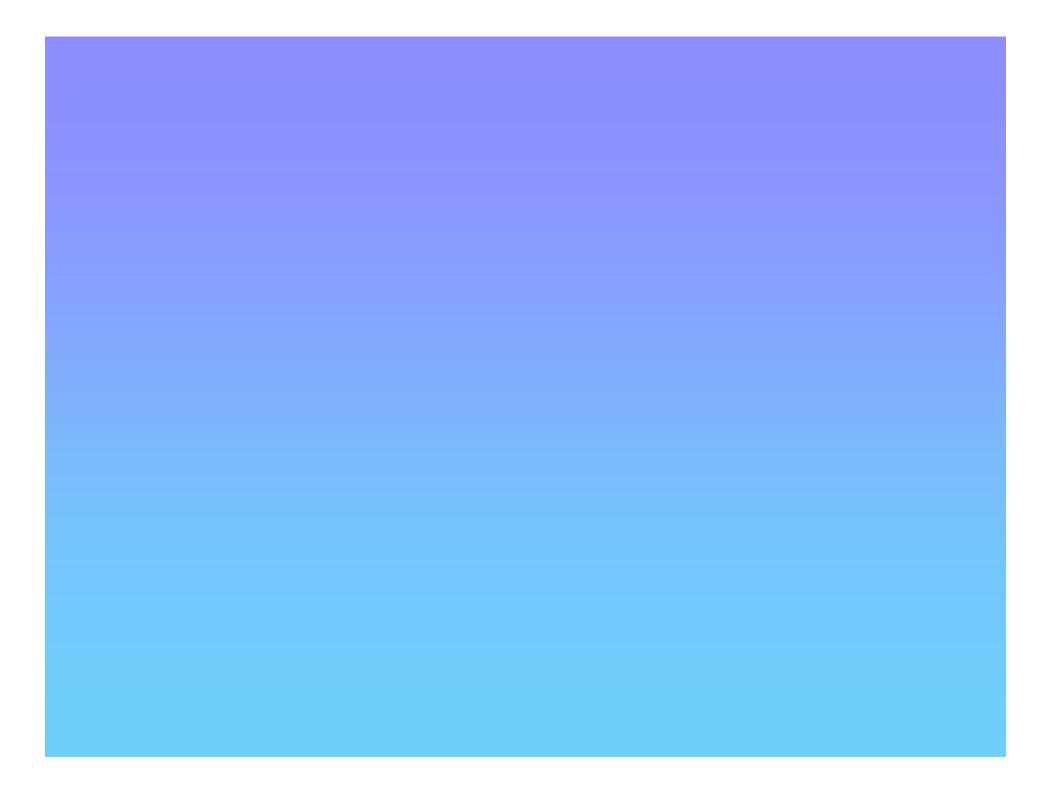
Flow chart per l'interpretazione delle prove spirometriche

Si effettua nei soggetti che si sospetta (anamnesi positiva) essere affetti da iperreattività bronchiale e che presentano un quadro funzionale normale al momento dell'osservazione.

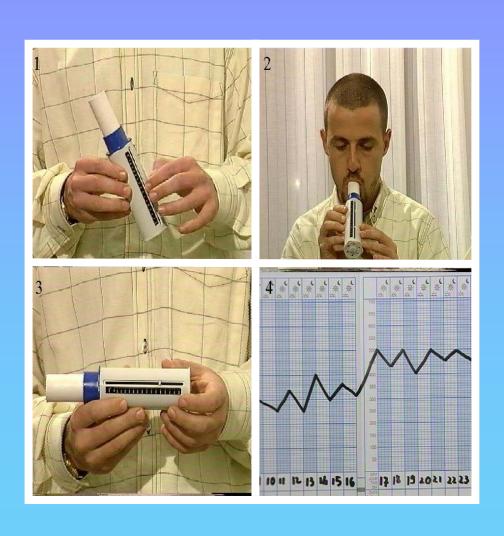
Esistono delle controindicazioni assolute (VEMS < 50% del predetto o < 1 L; IMA nei mesi precedenti; ipertensione non controllata; aneurisma aortico noto) e relative (VEMS < 60 % del predetto o < 1.5 L; incapacità di effettuare una manovra corretta; gravidanza; allattamento; terapie con inibitori delle colinesterasi)

Il test consiste nel far inalare per 2 minuti al soggetto per via aerosolica durante ventilazione a VC un agente broncocostrittore (metacolina, istamina, soluzioni iperosmolari) raddoppiando le concentrazioni (0.03 - 0.0625 - 0.125 - 0.25 - 0.5 - 1-2-4-8-16 mg/ml) ogni 5 minuti.

Dopo circa 30 e 90 secondi si esegue una spirometria per il calcolo del VEMS.


Si considera significativa una caduta del VEMS > 20%.

Classificazione del test di provocazione bronchiale


PC 20 FEV1 (mg/ml): concentrazione provocativa	PD 20 FEV1 (mcg): dose provocativa
NORMALE: > 16 mg/ml	NORMALE: > 1600 mcg
BORDERLINE: 4-16 mg/ml	LIEVE: 400-1600 mcg
LIEVE (test positivo): 1-4 mg/ml	MODERATO: 100-400 mcg
MODERATO-GRAVE: < 1 mg/ml	GRAVE: 50-100 mcg

Guidelines for Methacoline and Exercise Challenge Testing-1999. American Thoracic Society. Am J Respir Crit Care Med 2000; 161: 309-329

- molto sensibile (se negativa escludo asma)
- poco specifica (responsività bronchiale può essere presente anche in BPCO, scompenso cardiaco, fibrosi cistica, rinite allergica)

Picco di Flusso Espiratorio Misurazione e significato del picco di flusso

Strumento maneggevole, di poco costo e semplice utilizzo che misura la massima velocità di flusso espiratoria raggiunta durante una espirazione forzata (PEF o PEFR) e il volume espiratorio massimo nel primo secondo (VEMS) più specifico perché sforzo indipendente.

Mezzo utile per seguire l'andamento della malattia asmatica nel tempo con valutazione bi-giornaliera.

Test di funzionalità respiratoria La Ventilazione

Prove di Funzionalità Ventilatoria

- Volumi polmonari statici
- Volumi polmonari dinamici
 - Test di espirazione forzata
 - Test di reversibilità
 - Picco di flusso espiratorio
 - Test di iperreattività bronchiale

Test di performance dei muscoli respiratori

Test di performance dei muscoli respiratori

Contrattilità	Endurance	
Dipendenti dalla volontà:	Dipendenti dalla volontà:	
- MIP, MEP	- respirazione contro	
- Pdi max	resistenze	
Indipendenti dalla volontà: - Pdi twich	- massima ventilazione sostenibile (MSVV)	
- I di twicii	- massima ventilazione volontaria (MMV)	

Test di performance dei muscoli respiratori

- MIP: misura la massima pressione negativa che può essere generata da uno sforzo inspiratorio. Misura la forza del diaframma, dei muscoli inspiratori intercostali e degli altri muscoli inspiratori accessori.
- MEP: misura la massima pressione positiva che può essere generata da uno sforzo espiratorio. Misura la forza dei muscoli addominali e degli altri muscoli espiratori accessori.

Test di performance dei muscoli respiratori Alterazioni di MIP e MEP

- Malattie neuromuscolari (SLA, Distrofia Muscolare)
- Prolungato ricovero in rianimazione
- BPCO
- Tireopatie
- Scompenso cardio-circolatorio

Test di funzionalità polmonare

Gli scambi gassosi:

Diffusione

Metodo del respiro singolo

Emogasanalisi arteriosa

Capacità di diffusione

Il processo di diffusione dell'O₂ e della CO₂ dall'ambiente alveolare al sangue capillare e viceversa si sviluppa attraverso la membrana alveolocapillare. I test di diffusione valutano l'integrità di tale membrana.

Lo scambio dei gas attraverso tale barriera avviene tramite il meccanismo della diffusione passiva.

Capacità di diffusione Legge di Fick

La capacità di diffusione (DL) attraverso i tessuti è descritta dalla legge di Fick che indica la quantità di gas che passa la membrana nell'unità di tempo:

Vol. gas = $A/T \times \Delta p \times D$

- direttamente proporzionale alla superficie di scambio, cioè alla superficie del letto capillare (A) in contatto con gli alveoli (portata ematica e contenuto in Hb), alla costante di diffusione del gas (D), ed alla differenza di pressione parziale del gas (Δp) tra i due lati della membrana.
- <u>inversamente proporzionale</u> allo spessore della membrana (T).

Capacità di diffusione Metodo del respiro singolo

La DL viene valutata generalmente impiegando monossido di carbonio (CO), dotato di altissima affinità per l'Hb (DLCO).

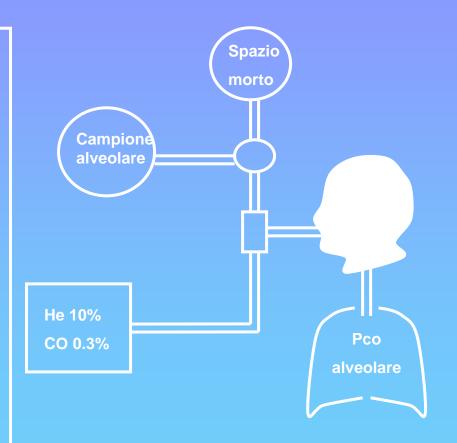
Il test di diffusione del monossido di carbonio viene effettuato facendo inalare al soggetto una miscela con CO a bassissime concentrazioni (0.3%) ed elio (He)* ad una concentrazione del 10% mediante respiro singolo.

^{*} Misura simultanea del volume alveolare

Capacità di diffusione Misurazione della Capacità di diffusione

Test del singolo respiro

Valuta la quantità di CO che attraversa la barriera alveolo-capillare durante un periodo di apnea di 10" a CPT.


Il soggetto compie 4-5 atti respiratori a VC.

Raggiunge il VR tramite un'espirazione forzata.

Compie un'inspirazione forzata fino a CPT (dopo aver collegato la sorgente del gas test allo spirometro) che il soggetto mantiene per 9-11" dopo i quali segue un'espirazione forzata.

Al termine dell'apnea si invita il soggetto a compiere un'espirazione forzata.

Dal volume di aria espirato vengono tolti i primi 750 ml (spazio morto anatomico e meccanico) e si analizza il successivo litro (rappresentativo del gas alveolare).

Capacità di diffusione Processi associati nella variazione nella DLCO

Riduzione DLCO:

- Patologie ostruttive
- Patologie restrittive
- Malattie sistemiche a coinvolgimento polmonare
- Patologie cardiovascolari
- Altre: anemia, IRC, dialisi, fumo di marjuana, ingestione acuta e cronica di etanolo, cocaina, fumo di sigaretta, BOOP.

Incremento DLCO:

- Policitemia
- Emorragia polmonare
- Patologie associate ad aumentato flusso ematico (Shunt sn-ds)
- Esercizio fisico
- Postura (aumento dal 5-30% nel passaggio da seduto a supino)

Capacità di diffusione Criteri di accettabilità

- Fase inspiratoria in meno di 4 secondi raggiungendo un volume > 90% CV
- Mantenere il respiro a CPT per 9-11 secondi senza segni di perdita d' aria
- Fase espiratoria in meno di 4 secondi
- Scarto dei primi 750 ml di aria eliminata
- Variabilità del 5-6%

Classificazione di gravità delle alterazioni della DLCO

Aumentato	>140% del predetto
Normale	81-140% del predetto
Limiti inferiori della norma	76-80% del predetto
Riduzione lieve	61-75% del predetto
Riduzione moderata	41-60% del predetto
Riduzione severa	<40% del predetto

Capacità di diffusione

DLCO/Va = KCO

- La DLCO si riduce con perdite effettive di volume (Va).
- La specificità aumenta se si considerano sia la DLCO che l' indice di membrana KCO (KCO = DLCO/Va) che rappresenta la parte di CO assorbita per litro di effettivo volume alveolare.
- Usato soprattutto per lo studio delle malattie interstiziali polmonari.
- Nei quadri restrittivi extrapolmonari (malattia della pleura, anomalie della cassa toracica e malattie neuromuscolari) il KCO tende ad essere aumentato.

Test di funzionalità polmonare

Gli scambi gassosi:

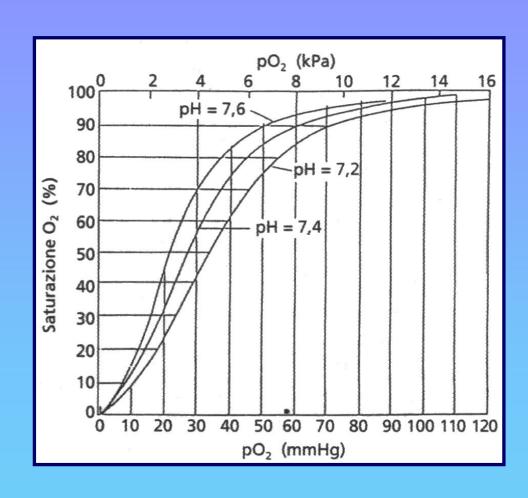
Diffusione

Metodo del respiro singolo

Emogasanalisi arteriosa

Emogasanalisi arteriosa Valori di normalità

```
• pH 7,40 (7,37-7,42)
```


• Pa02 80 - 100 mmHg

PaC02 35 - 45 mmHg

• HC03- 22 - 26 mEq/L

• BE -1 / +1

Curva di dissociazione dell'Hb

Le prove di funzionalità respiratoria

- La Ventilazione:
 - Prove di Funzionalità Ventilatoria
 - Test di performance dei muscoli respiratori

- Gli scambi gassosi:
 - Test della Diffusione del CO
 - Emogasanalisi arteriosa

Letture consigliate

 West, J.B., Fisiologia della respirazione – l'essenziale – Il Edizione. Piccin

Bibliografia

- 1. American Thoracic Society. Standardization of spirometry 1994 update.
 Am J Respir Crit Care Med 1995; 152 (3): 1107-1136
- 2. American Thoracic Society. 1991. Lung function testing: selection of reference values and interpretative strategies. Am. Rev. Respir. Dis. 144:1202-1218.
- 3. B.R. Celli, W. MacNee and committee members Eur Respir J 2004; 23: 932-946
- 4. Global Strategy for the Diagnosis, Management and Prevention of COPD: 2003 update L.M. Fabbri, S.S. Hurd, for the GOLD Scientific Committee Eur Respir J 2003; 22: 1-2.
- 5. Enright PL, Kaminsky DA Strategies for Screening for Chronic Obstructive Pulmonary Disease. Respir Care 2003;48(12):1194 –1201
- 6. Maestrelli. Fisiopatologia della broncopneumopatia cronica ostruttiva. Ann Ist Super Sanità 2003; 39(4):495-506
- 7. Guidelines for Methacoline and Exercise Challenge Testing-1999.
 American Thoracic Society. Am J Respir Crit Care Med 2000; 161: 309-329
- 8. Single-breath Carbon Monoxide Diffusing Capacity (Transfer Factor).

 American Thoracic Society. Am J Respir Crit Care Med 1995; 152: 2185-98